New Strongylophorines from the Okinawan Marine Sponge Petrosia (Strongyl ophora) corticata

Ayako Hoshino, ${ }^{\dagger}$ Hidemichi Mitome, ${ }^{\dagger}$ Hiroaki Miyaoka,*, ${ }^{\dagger}$ Akinori Shintani, ${ }^{\dagger}$ Yasuji Yamada, ${ }^{\dagger}$ and Rob W. M. van Soest ${ }^{\ddagger}$
School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, J apan, and Institute for Systematics and Ecology, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands

Received July 10, 2003

Abstract

New strongylophorines-22 (1), -23 (2), -24 (3), and -25 (4) were isol ated from the Okinawan sponge Petrosia (Strongylophora) corticata along with other known strongylophorines. The structures of these strongylophorines were determined on the basis of spectroscopic analysis and chemical conversions. Assessment was also made of the cytotoxicity of strongylophorines-1, $-2,-3,-4,-22(\mathbf{1}),-23$ (2), and -24 (3) toward HeLa cells.

Strongylophorines are meroditerpenoids, each possessing a hydroquinone situated on an isocopalane-type diterpene skeleton. ${ }^{1-6}$ Strongylophorines-1, -2 , and -3 were initially isolated from the Papua New Guinean sponge Strongylophora durissima, and the absolute configurations of strongy-lophorines-1 and -3 were determined on the basis of chemical correlation with (+)-manool. ${ }^{1 a}$ Twenty-one strongylophorines are reported in the literature. ${ }^{1-6} \mathrm{M}$ ost of strongylophorines have been found to possess biological activity, in the form of ichthyotoxic, antimicrobial, antifungal, and cytotoxic activity. While investigating the chemical constituents present in Okinawan marine invertebrates, ${ }^{7}$ four new strongylophorines, strongylophorines-22 (1), -23 (2), -24 (3), and -25 (4), were isolated from the Okinawan sponge Petrosia (Strongylophora) corti cata (Wilson, 1925) along with other known strongylophorines. The isolation and structure determinations are discussed below.

Results and Discussion

Sponge specimens of Petrosia (Strongyl ophora) corti cata, obtained in J une 2001 from the coral reef of Hatoma I sland (Okinawa, J apan), were extracted with MeOH and then acetone. The combined extracts were partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The EtOAc-soluble portion was partitioned between hexane and $80 \% \mathrm{MeOH}$. Repeated chromatographic separations of the $80 \% \mathrm{MeOH}$-sol uble portion gave strongylophorines-22 (1), -23 (2), -24 (3), and -25 (4) along with the known strongylophorines-1,1-2, ${ }^{1}-3,1^{1}-4,,^{2}-8,{ }^{2}$ $-15,{ }^{6}$ and -16. ${ }^{6}$

The molecular formula of strongylophorine-22 (1) was found to be $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{2}$ on the basis of the HREIMS spectrum. IR and UV spectra of $\mathbf{1}$ indi cated the presence of a hydroxy group (IR: $3435 \mathrm{~cm}^{-1}$) and aromatic ring (IR: $1496 \mathrm{~cm}^{-1}$, UV: $\lambda_{\max } 298,229,221 \mathrm{~nm}$). Twenty six carbons of 1 were identified as five methyls, eight $s p^{3}$ methylenes, three $s p^{3}$ methines, three sp^{2} methines, four sp^{3} quaternary carbons, and three sp^{2} quaternary carbons, from ${ }^{13} \mathrm{C} N M R$ and DEPT spectra. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR correlations were noted in the HMQC spectrum (Table 1). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR indicated a 1,2,4-trisubstituted benzene $\left[\delta_{\mathrm{H}} 6.62(1 \mathrm{H}, \mathrm{d}\right.$, $\mathrm{J}=8.4 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.9 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{br} \mathrm{s})$,

[^0]
${ }^{22} \quad 26$ strongylophorine-22 (1)

strongylophorine-24 (3)

strongylophorine-23 (2)

Figure 1.
$\delta_{\mathrm{C}} 148.5$ (C), 147.2 (C), 123.3 (C), 117.5 (CH), 115.8 (CH), $114.2(\mathrm{CH})$], one oxygenated sp^{3} quaternary carbon [$\delta_{\mathrm{C}} 76.6$ (C)], and five methyls [$\delta_{\mathrm{H}} 1.16(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{s}), 0.86$ $(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}} 33.3\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$, $20.5\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right)$]. COSY cross-peaks indicated linkages of vicinal protons to give rise to the following carbon sequences: C-1 to C-3, C-5 to C-7, C-9 to $\mathrm{C}-12, \mathrm{C}-14$ to $\mathrm{C}-15$, and $\mathrm{C}-18$ to $\mathrm{C}-19$. These partial structures were connected to each other via quaternary carbons, as evident from the following HMBC spectrum correlations: $\mathrm{Me}-23 / \mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9, \mathrm{C}-10$; $\mathrm{Me}-24 / \mathrm{C}-7, \mathrm{C}-8$, C-9, C-14; Me-25/C-12, C-13, C-14; Me-26/C-3, C-4, C-5, C-22; H-15/C-16, C-17, C-21; H-18/C-16, C-17, C-20; H-21/ $\mathrm{C}-15, \mathrm{C}-17, \mathrm{C}-20$. A cyclic ether moiety was demonstrated by the degree of unsaturation of $\mathbf{1}$. The relative configuration of 1 was deduced from the following NOESY correlations: $\mathrm{H}-6 \beta$ ($\delta_{\mathrm{H}} 1.57$)/Me-23, $\mathrm{Me}-26 ; \mathrm{H}-11 \beta$ ($\delta_{\mathrm{H}} 1.32$)/ $\mathrm{Me}-23, \mathrm{Me}-24, \mathrm{Me}-25 ; \mathrm{H}-9 / \mathrm{H}-5, \mathrm{H}-14$. The structure of $\mathbf{1}$ was thus determined to be that shown in 1.

The molecular formula of strongylophorine-23 (2) was $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3}$ according to the HREIMS spectrum. IR, UV, and NMR spectra of $\mathbf{2}$ were similar to those of $\mathbf{1}$. NMR spectra of $\mathbf{2}$ suggested that a methyl group of $\mathbf{1}$ had been replaced with a hydroxymethyl group [$\delta_{\mathrm{H}} 4.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}$), $\left.3.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}), \delta_{\mathrm{c}} 62.9\left(\mathrm{CH}_{2}\right)\right]$ in the case of $\mathbf{2}$ (Table 1). The position of the hydroxymethyl group of $\mathbf{2}$ was clearly confirmed by COSY and HMBC spectra as C-10, and the relative configuration of $\mathbf{2}$ was demonstrated by the NOESY spectrum.

Table 1. NMR Data for $\mathbf{1}$ and $\mathbf{2}$

no.	1		2	
	${ }^{13} \mathrm{C} N M \mathrm{R}^{\text {a }}$	${ }^{1} \mathrm{H} N \mathrm{NR}{ }^{\text {b }}$	${ }^{13} \mathrm{C} N M \mathrm{R}^{\text {a }}$	${ }^{1} \mathrm{H} N M \mathrm{R}^{\text {b }}$
1	$39.9\left(\mathrm{CH}_{2}\right)$	1.70 (1H, m)	$34.4\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.22(1 \mathrm{H}, \mathrm{br} \mathrm{~d}, \\ & \mathrm{J}=13.2) \end{aligned}$
		0.85 (1H, m)		0.77 (1H, m)
2	18.6 ($\left.\mathrm{CH}_{2}\right)$	1.67 (1H, m)	$18.5\left(\mathrm{CH}_{2}\right)$	1.61 (1H, m)
		1.41 (1H, m)		1.48 (1H, m)
3	$42.1\left(\mathrm{CH}_{2}\right)$	1.34 (1H, m)	$41.7\left(\mathrm{CH}_{2}\right)$	1.44 (1H, m)
		1.17 (1H, m)		1.19 (1H, m)
4	33.3 (C)		33.0 (C)	
5	56.5 (CH)	0.84 (1H, m)	56.9 (CH)	$\begin{aligned} & 0.97 \text { (1H, dd, } \\ & \mathrm{J}=12.5,2.0) \end{aligned}$
6	$18.2\left(\mathrm{CH}_{2}\right)$	1.57 (1H, m)	$18.0\left(\mathrm{CH}_{2}\right)$	1.54 (1H, m)
		1.38 (1H, m)		1.40 (1H, m)
7	$41.0\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.77(1 \mathrm{H}, \mathrm{dt}, \\ & \mathrm{J}=12.5,3.2) \end{aligned}$	$41.5\left(\mathrm{CH}_{2}\right)$	1.84 (1H, m)
		1.05 (1H,m)		1.11 (1H, m)
8	37.1 (C)		37.3 (C)	
9	60.7 (CH)	$\begin{aligned} & 0.99 \text { (1H, dd, } \\ & \mathrm{J}=12.1,2.0) \end{aligned}$	61.4 (CH)	1.07 (1H, m)
10	37.5 (C)		42.4 (C)	
11	18.6 (CH_{2})	1.71 (1H, m)	$21.9\left(\mathrm{CH}_{2}\right)$	1.92 (1H, m)
		1.32 (1H, m)		1.74 (1H, m)
12	$41.1\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.02(1 \mathrm{H}, \mathrm{dt} \\ & \mathrm{J}=12.5,3.2) \end{aligned}$	$42.3\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.00(1 \mathrm{H}, \mathrm{dt} \\ & \mathrm{J}=12.3,3.1) \end{aligned}$
		1.65 (1H, m)		1.51 (1H, m)
13	76.6 (C)		76.6 (C)	
14	52.4 (CH)	1.63 (1H, m)	52.8 (CH)	1.63 (1H, m)
15	$22.4\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.56(2 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=8.9) \end{aligned}$	$22.5\left(\mathrm{CH}_{2}\right)$	2.58 (2H, m)
16	123.3 (C)		123.2 (C)	
17	147.2 (C)		147.0 (C)	
18	117.5 (CH)	$\begin{aligned} & 6.62(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=8.4) \end{aligned}$	117.5 (CH)	$\begin{aligned} & 6.61(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=8.5) \end{aligned}$
19	114.2 (CH)	$\begin{aligned} & 6.56(1 \mathrm{H}, \mathrm{dd} \\ & \mathrm{J}=8.4,2.9) \end{aligned}$	114.2 (CH)	$\begin{aligned} & 6.56(1 \mathrm{H}, \mathrm{dd}, \\ & \mathrm{J}=8.5,2.9) \end{aligned}$
20	148.5 (C)		148.6 (C)	
21	115.8 (CH)	6.55 (1H, br s)	115.8 (CH)	6.55 (1H, br s)
22	$33.3\left(\mathrm{CH}_{3}\right)$	0.86 (3H, s)	$33.9\left(\mathrm{CH}_{3}\right)$	0.87 (3H, s)
23	$16.4\left(\mathrm{CH}_{3}\right)$	0.85 (3H, s)	$62.9\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 4.05(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=11.8) \\ & 3.92(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=11.8) \end{aligned}$
24	$16.0\left(\mathrm{CH}_{3}\right)$	0.88 (3H, s)	$15.4\left(\mathrm{CH}_{3}\right)$	1.06 (3H, s)
25	$20.5\left(\mathrm{CH}_{3}\right)$	1.16 (3H, s)	$20.1\left(\mathrm{CH}_{3}\right)$	1.16 (3H, s)
26	$21.4\left(\mathrm{CH}_{3}\right)$	0.82 (3H, s)	$21.9\left(\mathrm{CH}_{3}\right)$	0.78 (3H, s)

${ }^{\mathrm{a}} 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ${ }^{\mathrm{b}} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
The molecular formula of strongylophorine-24 (3) was indicated by the HREIMS spectrum to be $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}$. IR, UV, and NMR spectra of $\mathbf{3}$ were similar to those of 2 except for formyl group [IR: $1704 \mathrm{~cm}^{-1}, \mathrm{NMR}: \delta_{\mathrm{H}} 10.11(1 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}}$ 206.3 (C)] (Table 2). The position of the formyl group of 3 was clearly indicated by COSY and HMBC spectra to be $\mathrm{C}-10$, and the relative configuration of $\mathbf{3}$ was demonstrated by the NOESY spectrum.

The molecular formula of strongylophorine-25 (4) was $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{4}$ on the basis of the HRESIMS spectrum. IR, UV, and NMR spectra of $\mathbf{4}$ were essentially those of $\mathbf{2}$. NMR spectra of $\mathbf{4}$ suggested a methyl group of $\mathbf{2}$ to have been replaced with a hydroxymethyl group [$\delta_{\mathrm{H}} 3.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.11.1 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.1 \mathrm{~Hz}), \delta_{\mathrm{C}} 67.1\left(\mathrm{CH}_{2}\right)\right]$ in the case of 4 (Table 2). The position of the hydroxymethyl group of 4 was clearly shown by COSY and HMBC spectra to be $\mathrm{C}-4$, and the relative configuration of 4 was found from the NOESY spectrum.

The absolute configurations of strongyl ophorines-22 (1)25 (4) were clarified on the basis of their chemical correlation with strongylophorine-3,1 whose absol ute configuration was already known (Scheme 1). Strongylophorine-22 (1) was treated with Mel and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone to give methyl

Table 2. NMR Data for $\mathbf{3}$ and $\mathbf{4}$

no.	3		4	
	${ }^{13} \mathrm{C} \mathrm{NMR}{ }^{\text {a }}$	${ }^{1} \mathrm{H} N \mathrm{NR}{ }^{\text {b }}$	${ }^{13} \mathrm{C}$ NMR ${ }^{\text {a }}$	${ }^{1} \mathrm{H} N \mathrm{NR}{ }^{\text {b }}$
1	34.3 (CH_{2})	2.61 (1H, m)	35.7 (CH_{2})	$\begin{aligned} & 2.09(1 \mathrm{H}, \mathrm{br} \mathrm{~d} \\ & \mathrm{J}=13.2,4.4) \end{aligned}$
		0.72 (1H, m)		$\begin{aligned} & 0.86(1 \mathrm{H}, \mathrm{dt}, \\ & \mathrm{J}=13.2,4.4) \end{aligned}$
2	19.3 ($\left.\mathrm{CH}_{2}\right)$	1.43 (1H, m)	18.6 ($\left.\mathrm{CH}_{2}\right)$	1.61 (1H, m)
		1.26 (1H, m)		1.49 (1H, m)
3	$41.6\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.38(1 \mathrm{H}, \mathrm{br} \mathrm{~d}, \\ & \mathrm{J}=12.2) \end{aligned}$	36.3 (CH_{2})	1.70 (1H, m)
		1.21 (1H, m)		1.06 (1H, m)
4	33.6 (C)		38.3 (C)	
5	55.0 (CH)	1.25 (1H, m)	56.7 (CH)	1.13 (1H, m)
6	17.6 (CH_{2})	1.85 (2H, m)	$19.1\left(\mathrm{CH}_{2}\right)$	1.67 (2H, m)
7	$39.7\left(\mathrm{CH}_{2}\right)$	1.93 (1H, m)	$42.1\left(\mathrm{CH}_{2}\right)$	1.86 (1H, m)
		1.19 (1H, m)		1.04 (1H, m)
8	36.9 (C)		37.1 (C)	
9	60.5 (CH)	$\begin{aligned} & 1.32(1 \mathrm{H}, \mathrm{br} \mathrm{~d}, \\ & \mathrm{J}=12.8) \end{aligned}$	61.8 (CH)	1.11 (1H, m)
10	53.4 (C)		42.0 (C)	
11	19.0 (CH_{2})	1.90 (1H, m)	$20.9\left(\mathrm{CH}_{2}\right)$	1.83 (1H, m)
		1.15 (1H, m)		1.63 (1H, m)
12	$40.7\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.03(1 \mathrm{H}, \text { br d, } \\ & \mathrm{J}=12.8) \end{aligned}$	$41.9\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.01(1 \mathrm{H}, \mathrm{dt}, \\ & \mathrm{J}=12.2,2.9) \end{aligned}$
		1.57 (1H, m)		1.55 (1H, m)
13	76.0 (C)		76.5 (C)	
14	51.4 (CH)	$\begin{aligned} & 1.68(1 \mathrm{H}, \mathrm{dd} \\ & \mathrm{J}=12.8,5.4) \end{aligned}$	52.7 (CH)	1.64 (1H, m)
15	$22.8\left(\mathrm{CH}_{2}\right)$	2.57 (2H, m)	22.6 ($\left.\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.58(2 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=9.0) \end{aligned}$
16	122.7 (C)		123.1 (C)	
17	147.0 (C)		147.1 (C)	
18	117.6 (CH)	$\begin{aligned} & 6.61(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=8.4) \\ & 6.56(1 \mathrm{H}, \mathrm{~d} \\ & J=8.4) \end{aligned}$	117.5 (CH)	$\begin{aligned} & 6.62(1 \mathrm{H}, \mathrm{dd}, \\ & \mathrm{J}=7.0,2.5) \end{aligned}$
19	114.4 (CH)		114.2 (CH)	$\begin{aligned} & 6.56(1 \mathrm{H}, \mathrm{dd}, \\ & \mathrm{J}=7.0,2.8) \end{aligned}$
20	148.6 (C)		148.6 (C)	
21	115.7 (CH)	6.55 (1H, s)	115.7 (CH)	6.55 (1H, s)
22	$31.9\left(\mathrm{CH}_{3}\right)$	0.94 (3H, s)	$27.7\left(\mathrm{CH}_{3}\right)$	0.99 (3H, s)
23	206.3 (CHO)	10.11 (1H, s)	$63.5\left(\mathrm{CH}_{2}\right)$	3.88 (2H, s)
24	16.6 (CH_{3})	0.76 (3H, s)	15.0 (CH_{3})	1.05 (3H, s)
25	20.3 (CH_{3})	1.09 (3H, s)	20.3 (CH_{3})	1.17 (3H, s)
26	$20.8\left(\mathrm{CH}_{3}\right)$	0.80 (3H, s)	$67.1\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 3.62(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=11.1) \end{aligned}$
				$\begin{aligned} & 3.54(1 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=11.1) \end{aligned}$

a $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ${ }^{\text {b }} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
ether 5. This methyl ether 5 was also derived from strongylophorine-3 in the following steps: (1) methylation of either carboxy or hydroxy groups, (2) LiAlH_{4} reduction of ester, (3) PCC oxidation of the primary hydroxy group to give an aldehyde, and (4) Wolff-Kishner reduction of the formyl group. It thus follows that the absolute configuration of $\mathbf{1}$ could be concluded to be $5 \mathrm{~S}, 8 \mathrm{R}, 9 \mathrm{R}, 10 \mathrm{~S}, 13 \mathrm{~S}$, and 14S. Strongylophorine-23 (2) was converted to the above methyl ether 5 via alcohol 6 by (1) methylation of the phenolic hydroxy group to give 6, (2) oxidation of the primary hydroxy group, and (3) Wolff-Kishner reduction of the formyl group. Strongylophorine-24 (3) was reduced with LiAlH_{4} to provide strongylophorine-23 (2). The absolute configurations of $\mathbf{2}$ and $\mathbf{3}$ are thus shown to be 5S, 8R, 9S, 10R, 13S, and 14S. Strongylophorine-25 (4) was treated with Mel and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone to give methyl ether 7. Methyl ether 7 was obtained from strongylophorine- 2^{1} via lactone 8 by (1) methylation of the phenolic hydroxy group in strongylophorine-2 to give 8 and (2) LiAlH_{4} reduction of lactone. Lactone 8 was converted to alcohol 6 by (1) DIBAL-H reduction to give hemiacetal and (2) WolffKishner reduction. The absolute configuration of 4 is clearly shown by these results to be 4S, 5S, 8R, 9S, 10S, 13S, and 14S.

Scheme 1

Strongylophorines-1-4 and -22 (1)-24 (3) displayed antiproliferative activity toward HeL a cells at IC_{50} values of 49.1, > 100, 45.2, 50.5, 26.6, 62.0, and >100 $\mu \mathrm{M}$, respectively. 8,9

Experimental Section

General Experimental Procedures. Optical rotations were measured with a J ASCO DIP-360 polarimeter. IR spectra were recorded with a J ASCO FT-IR/620 spectrometer and UV spectra with a J ASCO V-550 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken with a Bruker DRX-400 or DRX-500 spectrometer. Chemical shifts aregiven on a $\delta(\mathrm{ppm})$ scale with tetramethylsilane (TMS) as the internal standard (s, singlet; d, doublet; t, triplet; m, multiplet; br, broad). EIMS spectra were obtained with a Thermo Quest TSQ 700 spectrometer and high-resolution EIMS (HREIMS) spectra, using a VG Auto Spec E spectrometer. ESIMS and high-resolution ESIMS (HRESIMS) spectra were obtained with a Micromass LCT spectrometer. Flash column chromatography was carried out on Kanto Chemical silica gel 60N (spherical, neutral) 40-50 $\mu \mathrm{m}$ or ODS Wakogel LP-40 C-18. HPLC separations were made using a YMC-Pack R\&D ODS ($250 \times 20 \mathrm{~mm}$) column and UV detector (254 nm).

Animal Material. Sponge specimens (moss-green, hard) were obtained from the coral reef of Hatoma Island, Okinawa, J apan, at a depth of 5 m by hand using scuba, in J une 2001. All the sponge specimens bel ong to the classification Petrosia (Strongylophora) corticata (Wil son, 1925). A voucher specimen has been deposited at University of Amsterdam (ZMA POR 17252) and another at Tokyo University of Pharmacy and Life Science (S-01-1).

Extraction and Isolation. Wet specimens (8.0 kg) were cut into small pieces and extracted with $\mathrm{MeOH}(12.0 \mathrm{~L} \times 3$) and then acetone ($12.0 \mathrm{~L} \times 3$). The combined extracts were concentrated and partitioned between EtOAc (4.0 L $\times 4$) and water (2.0 L) to give an EtOAc-soluble portion (210 g). The EtOAc-soluble portion was partitioned between hexane ($1.0 \mathrm{~L} \times 4$) and $80 \% \mathrm{MeOH}(2.0 \mathrm{~L})$ to give a hexane-soluble portion (59.1 g) and an $80 \% \mathrm{MeOH}$-soluble portion (148 g). The
$80 \% \mathrm{MeOH}$-soluble portion was chromatographed on silica gel using a hexane-EtOAc (2:1, 1:1, 1:2) gradient and MeOH as eluent to produce fractions $1(15.3 \mathrm{~g}), 2(55.0 \mathrm{~g}), 3(21.8 \mathrm{~g}), 4$ $(23.2 \mathrm{~g})$, and 5 (33.3 g). F raction 1 was subjected to flash silica gel column chromatography (elution with hexane-EtOAc (5:2)) to give fractions 1-1 (2.49 g), 1-2 (1.96 g), 1-3 (1.68 g), and 1-4 $(9.10 \mathrm{~g})$. Fraction 1-1 was subjected to flash silica gel column chromatography (elution with hexane-EtOAc (5:1)) to give strongylophorine-22 (1) (1.31 g). Fraction 1-2 was chromatographed on flash silica gel with hexane-EtOAc ($4: 1$) as eluent to give strongylophorine- 1^{11} (1.03 g). Fraction 1-3 was chromatographed on flash silica gel with hexaneEtOAc (3:1), giving fractions 1-3-1 (468 mg), 1-3-2 (75.0 mg), and 1-3-3 (1.15 g). Fraction 1-3-2 was subjected to silica gel HPLC (elution with hexane-acetone (7:1)) and ODS-HPLC (elution with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (19:1)) to give strongylophorine-24 (3) (14.4 mg). By the recrystallization of fraction 1-3-3 from MeOH strongylophorine-4 ${ }^{2}(1.06 \mathrm{~g})$ was obtained. F raction 1-4 was chromatographed on flash silica gel with hexane-EtOAc (3:1) as eluent to give strongylophorine-23 (2) (148 mg). Fraction 2 was subjected to flash silica gel column chromatography (elution with hexane-EtOAc (2:1)) to give strongylophorine 3^{11} (54.2 g). Fraction 3 was recrystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$ to give strongylophorines- 15^{6} and -16^{6} (9.32 g). Fraction 4 was subjected to flash silica gel column chromatography (elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1)) to give strongylophorine 2^{1} (15.2 g). Fraction 5 was chromatographed on flash silica gel using hexane-EtOAc (2:3), EtOAc, and MeOH as eluent to give strongylophorine-8 ${ }^{2}(13.1 \mathrm{~g})$ and strongylophorine-25 (4) (362 mg).
Strongylophorine-22 (1): colorless needles (MeOH); mp $190-191{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-75.2^{\circ}$ (c 1.1, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\epsilon)$ 298 (4432), 229 (5932), 221 (6684) nm; IR (KBr) $\mathrm{V}_{\max } 3435$, 1496, $1232 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; COSY correlations (H/H) H-2 $\left(\delta_{\mathrm{H}} 1.67\right) / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}} 0.85\right), \mathrm{H}-3 \alpha\left(\delta_{\mathrm{H}} 1.34\right), \mathrm{H}-3 \beta$ ($\delta_{H} 1.17$); $\mathrm{H}-2 \beta\left(\delta_{H} 1.41\right) / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}} 0.85\right), \mathrm{H}-1 \beta\left(\delta_{\mathrm{H}} 1.70\right), \mathrm{H}-3 \beta$ ($\delta_{\mathrm{H}} 1.17$); $\mathrm{H}-6 \alpha\left(\delta_{\mathrm{H}} 1.38\right) / \mathrm{H}-5, \mathrm{H}-7 \beta$ ($\delta_{\mathrm{H}} 1.77$); $\mathrm{H}-6 \beta$ ($\delta_{\mathrm{H}} 1.57$)/ $\mathrm{H}-5, \mathrm{H}-7 \alpha\left(\delta_{\mathrm{H}} 1.05\right), \mathrm{H}-7 \beta\left(\delta_{\mathrm{H}} 1.77\right)$; $\mathrm{H}-11 \alpha\left(\delta_{\mathrm{H}} 1.71\right) / \mathrm{H}-12 \beta\left(\delta_{\mathrm{H}}\right.$ 2.02); $\mathrm{H}-11 \beta$ ($\delta_{\mathrm{H}} 1.32$)/H-9, $\mathrm{H}-12 \alpha$ ($\delta_{\mathrm{H}} 1.65$), $\mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.02$); H-14/H-15; H-18/H-19; HMBC correlations (H/C) H-3/C-4, C-22; H-5/C-3, C-4, C-22; H-7/C-5; H-9/C-23, C-24; H-12/C-9, C-11, C-13, C-25, H-14/C-7, C-8, C-9, C-12, C-13, C-15, C-24, C-25; H-15/C-13, C-14, C-16, C-17, C-21; H-18/C-16, C-17, C-20; H-19/C-17, C-20; H-21/C-15, C-17, C-20; Me-22/C-3, C-4, C-5, C-26; Me-23/C-1, C-5, C-9, C-10; Me-24/C-7, C-8, C-9, C-14; Me-25/C-12, C-13, C-14; Me-26/C-3, C-4, C-5, C-22; NOE correlations (H/H) H-5/H-3 $\left(\delta_{H} 1.34\right), \mathrm{H}-9 ; \mathrm{H}-6 \beta\left(\delta_{H} 1.57\right) / \mathrm{Me}$ 23, Мe-26; H-9/H-1 $\alpha\left(\delta_{H} 0.85\right.$), H-14; H-11 β ($\delta_{H} 1.32$)/Me-23, $\mathrm{Me}-24, \mathrm{Me}-25 ; \mathrm{H}-14 / \mathrm{H}-7 \alpha\left(\delta_{\mathrm{H}} 1.05\right)$; $\mathrm{H}-15 / \mathrm{H}-7 \beta$ ($\delta_{\mathrm{H}} 1.77$), $\mathrm{H}-21$, Me-24, Me-25; Me-22/H-6 $\alpha\left(\delta_{H} 1.38\right.$); $\mathrm{Me} 25 / \mathrm{H}-12 \beta$ ($\delta_{H} 2.02$); Me-26/H-2 β ($\delta_{\mathrm{H}} 1.41$), H-3 ($\delta_{\mathrm{H}} 1.17$); EIMS m/z $382\left[\mathrm{M}^{+}\right.$] (100), 367 (5), 297 (20), 259 (24), 123 (31); HREIMS m/z 382.2878 (calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{2}, 382.2872$).
Strongylopholine-23 (2): colorless, amorphous; $[\alpha]^{23}$ D -52.2° ($\mathrm{C} 1.2, \mathrm{CHCl}_{3}$); UV (MeOH) $\lambda_{\max }(\epsilon) 298$ (3822), 229 (5066), 220 (5950) nm; IR (KBr) $\mathrm{V}_{\max } 3409,1494,1232 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; COSY correlations (H/H) H-2 α ($\delta_{\mathrm{H}} 1.48$)/H-1 $\alpha\left(\delta_{\mathrm{H}} 0.77\right.$), $\mathrm{H}-1 \beta$ (δ_{H} 2.22), $\mathrm{H}-3 \alpha\left(\delta_{\mathrm{H}} 1.19\right.$); $\mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.61$)/H-1 $\alpha\left(\delta_{\mathrm{H}} 0.77\right), \mathrm{H}-1 \beta\left(\delta_{\mathrm{H}} 2.22\right), \mathrm{H}-3 \alpha\left(\delta_{\mathrm{H}} 1.19\right) ; \mathrm{H}-6 \alpha$ ($\delta_{\mathrm{H}} 1.54$)/ $\mathrm{H}-5, \mathrm{H}-7 \beta$ ($\delta_{\mathrm{H}} 1.11$); $\mathrm{H}-6 \beta\left(\delta_{\mathrm{H}} 1.40\right) / \mathrm{H}-5, \mathrm{H}-7 \alpha\left(\delta_{\mathrm{H}}\right.$ 1.84), $\mathrm{H}-7 \beta$ ($\delta_{\mathrm{H}} 1.11$); $\mathrm{H}-11 \alpha\left(\delta_{\mathrm{H}} 1.92\right) / \mathrm{H}-9, \mathrm{H}-12 \alpha\left(\delta_{H} 1.51\right.$), $\mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.00$); $\mathrm{H}-11 \beta$ ($\delta_{\mathrm{H}} 1.74$)/H-9, $\mathrm{H}-12 \alpha$ ($\delta_{\mathrm{H}} 1.51$), $\mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.00$); $\mathrm{H}-14 / \mathrm{H}-15 ; \mathrm{H}-18 / \mathrm{H}-19$; HMBC correlations (H / C) H-1/C-2, C-3, C-5, C-9, C-10, C-23; H-2/C-1, C-3, C-4; H-3/C1, C-2, C-4, C-5, C-22, C-26; H-5/C-4, C-6, C-9, C-10, C-22, C-23, $\mathrm{C}-26$; $\mathrm{H}-6 / \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8 ; \mathrm{H}-7 / \mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-14, \mathrm{C}-24 ;$ H-9/C-10, C-11, C-12, C-24; H-11/C-8, C-9, C-10, C-12, C-13; $\mathrm{H}-12 / \mathrm{C}-9, \mathrm{C}-11, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-25$; $\mathrm{H}-14 / \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-13$, C-15, C-24, C-25; H-15/C-8, C-13, C-14, C-16, C-17, C-21; H-18/ C-16, C-17, C-20; H-19/C-17, C-20, C-21; H-21/C-15, C-17, C-19, C-20; Me-22/C-3, C-4, C-5; H-23/C-1, C-9, C-10; Me-24/C-7, C-8, C-9, C-14; Me-25/C-12, C-13, C-14; Me-26/C-3, C-4, C-5, C-22; NOE correlations (H/H) H-1 $\beta\left(\delta_{H} 2.22\right) / \mathrm{H}-11 \alpha\left(\delta_{H} 1.92\right) ; \mathrm{H}-5 /$ $\mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}} 0.77\right), \mathrm{H}-3 \alpha\left(\delta_{\mathrm{H}} 1.19\right), \mathrm{H}-9, \mathrm{Me}-22 ; \mathrm{H}-6 \beta\left(\delta_{\mathrm{H}} 1.40\right) / \mathrm{H}-$ 23a (δ_{H} 3.92), Me-24, Me-26; H-9/H-1 $\boldsymbol{~}_{\mathrm{H}} 0.77$), $\mathrm{H}-7 \alpha$ (δ_{H}
1.84), $\mathrm{H}-14 ; \mathrm{H}-14 / \mathrm{H}-12 \alpha\left(\delta_{H} 1.51\right.$); $\mathrm{H}-15 / \mathrm{H}-7 \alpha\left(\delta_{H} 1.84\right.$), $\mathrm{H}-21$, Me-24, Me-25; Me-22/H-6 ($\delta_{н} 1.54$), Me-26; H-23b ($\delta_{н} 4.05$)/ $\mathrm{H}-2 \beta$ ($\delta_{H} 1.61$), $\mathrm{Me}-26 ; \mathrm{Me}-24 / \mathrm{H}-11 \beta\left(\delta_{H} 1.74\right)$, $\mathrm{H}-23 \mathrm{a}\left(\delta_{H} 3.92\right)$, Me-25; Me-25/H-11 β ($\delta_{H} 1.74$), H-12 β ($\delta_{\text {H }} 2.00$); EIMS m/z 398 [M^{+}] (100), 367 (10), 275 (8); HREIMS m/z 398.2807 (calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3}, 398.2821$).

Strongylopholine-24 (3): col orless needles ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$); $\mathrm{mp} 214-216^{\circ} \mathrm{C} ;[\alpha]^{26} \mathrm{D}-25.5^{\circ}$ (c 1.0, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}$ (ϵ) 297 (3803), 228 (5296), 220 (6273) nm; IR (KBr) $\mathrm{v}_{\max } 3428$, 1704, 1495, $1231 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 2; COSY correlations (H / H) $\mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}} 1.43\right) / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}} 0.72\right), \mathrm{H}-1 \beta\left(\delta_{\mathrm{H}}\right.$ 2.61), $\mathrm{H}-3 \beta$ ($\delta_{\mathrm{H}} 1.38$); $\mathrm{H}-2 \beta\left(\delta_{\mathrm{H}} 1.26\right) / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}} 0.72\right), \mathrm{H}-1 \beta\left(\delta_{\mathrm{H}}\right.$ 2.61), $\mathrm{H}-3 \beta$ ($\delta_{H} 1.38$); $\mathrm{H}-6 / \mathrm{H}-5, \mathrm{H}-7 \alpha\left(\delta_{H} 1.19\right) ; \mathrm{H}-11 \alpha\left(\delta_{H} 1.15\right) /$ $\mathrm{H}-9, \mathrm{H}-12 \alpha\left(\delta_{\mathrm{H}} 1.57\right), \mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.03$); $\mathrm{H}-11 \beta\left(\delta_{\mathrm{H}} 1.90\right) / \mathrm{H}-9$, $\mathrm{H}-12 \alpha$ ($\delta_{\mathrm{H}} 1.57$); $\mathrm{H}-14 / \mathrm{H}-15 ; \mathrm{H}-18 / \mathrm{H}-19$; HMBC correlations (H/C) H-1/C-3, C-5, C-10, C-23; H-2/C-3, C-4, C-10; H-3/C-1, C-5; H-5/C-4, C-6, C-7, C-10, C-23; H-6/C-5, C-7, C-8, C-10; H-7/C-5, C-6, C-9, C-24; H-9/C-8, C-10, C-11, C-12, C-14, C-23, C-24; H-11/C-8, C-9, C-12, C-13; H-12/C-9, C-11, C-13, C-14, $\mathrm{C}-25 ; \mathrm{H}-15 / \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-16, \mathrm{C}-17, \mathrm{C}-21 ; \mathrm{H}-18 / \mathrm{C}-16, \mathrm{C}-20$; H-19/C-17, C-21; H-21/C-15, C-17, C-19, C-20; Me-22/C-3, C-4, C-5, C-26; CHO-23/C-1, C-10; Мe-24/C-7, C-8, C-9, C-14; Me 25/C-12, C-13, C-14; Me-26/C-3, C-4, C-5, C-22; NOE correlations (H / H) H-9/H-1 $\alpha\left(\delta_{\mathrm{H}} 0.72\right.$), $\mathrm{H}-5, \mathrm{H}-12 \alpha$ ($\delta_{\mathrm{H}} 1.57$), $\mathrm{H}-14$; $\mathrm{H}-14 / \mathrm{H}-7 \alpha\left(\delta_{H} 1.19\right.$), $\mathrm{H}-12 \alpha$ ($\delta_{H} 1.57$); $\mathrm{H}-15 / \mathrm{H}-21, \mathrm{Me}-24, \mathrm{Me}-$ 25 ; Me-22/H-3 $\alpha\left(\delta_{\mathrm{H}} 1.21\right.$), H-6, Me-26; CHO-23/H-6, H-11 β (δ_{H} 1.90), $\mathrm{Me} 24, \mathrm{Me}-26 ; \mathrm{Me}-24 / \mathrm{H}-11 \beta$ ($\delta_{\mathrm{H}} 1.90$), Me 25 ; $\mathrm{Me} 25 / \mathrm{H}-$ 12β ($\delta_{\mathrm{H}} 2.03$); $\mathrm{Me}-26 / \mathrm{H}-3 \beta$ ($\delta_{\mathrm{H}} 1.38$); EIMS m/z $396\left[\mathrm{M}^{+}\right.$] (100), 367 (5), 297 (3), 278 (28), 245 (20), 91 (32); HREIMS m/z 396.2677 (calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}, 396.2664$).

Strongylopholine-25 (4): colorless needles (MeOH); mp $262-263^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}-60.0^{\circ}\left(\mathrm{C} 0.1, \mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{EtOH}) \lambda_{\text {max }}(\epsilon)$ 298 (3993), 228 (5405), 221 (6299) nm; IR (KBr) $\mathrm{V}_{\max }$ 3410, 1474, $1229 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 2; COSY correlations (H / H) $\mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}} 1.49\right) / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}} 0.86\right), \mathrm{H}-1 \beta\left(\delta_{\mathrm{H}}\right.$ 2.09), $\mathrm{H}-3 \alpha\left(\delta_{H} 1.06\right), \mathrm{H}-3 \beta\left(\delta_{H} 1.70\right)$; $\mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.61$)/H-1 $\alpha\left(\delta_{\mathrm{H}}\right.$ $0.86), \mathrm{H}-1 \beta$ ($\delta_{\mathrm{H}} 2.09$), $\mathrm{H}-3 \alpha\left(\delta_{\mathrm{H}} 1.06\right), \mathrm{H}-3 \beta$ ($\delta_{\mathrm{H}} 1.70$); H-6/H-5, $\mathrm{H} 7-\alpha$ ($\delta_{\mathrm{H}} 1.04$), $\mathrm{H}-7 \beta\left(\delta_{\mathrm{H}} 1.86\right.$); $\mathrm{H}-11 \alpha\left(\delta_{\mathrm{H}} 1.83\right.$)/H-9, $\mathrm{H}-12 \alpha\left(\delta_{\mathrm{H}}\right.$ 1.55), $\mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.01$); $\mathrm{H}-11 \beta\left(\delta_{\mathrm{H}} 1.63\right) / \mathrm{H}-9, \mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.01$); $\mathrm{H}-14 / \mathrm{H}-15 ; \mathrm{H}-18 / \mathrm{H}-19$; HMBC correlations (H/C) H-1/C-2, C-3, $\mathrm{C}-5, \mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-23$; H-3/C-1, C-2, C-4, C-22, C-26; H-5/C-4, C-6, C-9, C-22; H-6/C-5; H-7/C-5, C-6, C-8, C-10, C-24; H-9/C5, C-7, C-8, C-10, C-11, C-14, C-23, C-24; H-11/C-8, C-12, C-13; $\mathrm{H}-12 / \mathrm{C}-9, \mathrm{C}-11, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-25$; $\mathrm{H}-14 / \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-15$, $\mathrm{C}-24, \mathrm{C}-25 ; \mathrm{H}-15 / \mathrm{C}-8, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-16, \mathrm{C}-21 ; \mathrm{H}-18 / \mathrm{C}-16, \mathrm{C}-17$, C-20; H-19/C-17, C-20, C-21; H-21/C-15, C-19; Me-22/C-3, C-4, C-5, C-26; H-23/C-1, C-5, C-9, C-10; Me-24/C-7, C-8, C-9, C-14; Me-25/C-12, C-13, C-14; H-26/C-3, C-4, C-5, C-22; NOE correlations $(\mathrm{H} / \mathrm{H}) \mathrm{H}-1 \beta\left(\delta_{\mathrm{H}} 2.09\right) / \mathrm{H}-11 \alpha\left(\delta_{\mathrm{H}} 1.83\right) ; \mathrm{H}-5 / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}}\right.$ 0.86), $\mathrm{H}-3 \alpha$ ($\delta_{\mathrm{H}} 1.06$), $\mathrm{H}-7 \alpha$ ($\delta_{\mathrm{H}} 1.04$), $\mathrm{Me}-22$; $\mathrm{H}-9 / \mathrm{H}-1 \alpha\left(\delta_{\mathrm{H}}\right.$ 0.86), $\mathrm{H}-12 \alpha$ ($\delta_{\mathrm{H}} 1.55$), $\mathrm{H}-14 ; \mathrm{H}-11 \beta\left(\delta_{\mathrm{H}} 1.63\right) / \mathrm{Me}-24, \mathrm{Me}-25$; $\mathrm{H}-14 / \mathrm{H}-7 \alpha$ ($\delta_{\mathrm{H}} 1.04$); $\mathrm{H}-15 / \mathrm{H}-7 \beta$ ($\delta_{\mathrm{H}} 1.86$), $\mathrm{H}-21, \mathrm{Me}-24, \mathrm{Me}-$ 25; Me-22/H-6, H-26a ($\delta_{H} 3.62$), H-26b ($\delta_{H} 3.54$); H-23/H-1 β ($\delta_{\mathrm{H}} 2.09$), H-2 ($\delta_{\mathrm{H}} 1.61$), H-6, Me-24, H-26a ($\delta_{\mathrm{H}} 3.62$), H-26b ($\delta_{\mathrm{H}} 3.54$); $\mathrm{Me}-25 / \mathrm{H}-12 \beta$ ($\delta_{\mathrm{H}} 2.01$), $\mathrm{Me}-24$; $\mathrm{H}-26 \mathrm{a}\left(\delta_{\mathrm{H}} 3.62\right) / \mathrm{H}-2 \beta$ ($\delta_{H} 1.61$); H-26b ($\delta_{H} 3.54$)/H-6; ESIMS m/z $415\left[\mathrm{M}^{+}+\mathrm{H}\right](50)$, 397 (100), 379 (33), 301 (90), 273 (28); HRESIMS m/z 415.2818 (cal cd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{4}, \mathrm{M}^{+}+\mathrm{H}, 415.2848$).

Synthesis of Methyl Ether 5 from Strongylopholine22 (1). To a solution of strongylopholine-22 (1) ($11.0 \mathrm{mg}, 28.8$ $\mu \mathrm{mol}$) in acetone ($300 \mu \mathrm{~L}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(16.0 \mathrm{mg}$, 115 $\mu \mathrm{mol}$) and iodomethane ($5.4 \mu \mathrm{~L}, 84.6 \mu \mathrm{~mol}$). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (24:1)) to give methyl ether 5 ($11.4 \mathrm{mg}, 100 \%$ yield): colorless, amorphous; $[\alpha]^{26} \mathrm{D}-71.9^{\circ}$ (c 1.1, CHCl_{3}); UV (EtOH) $\lambda_{\max }(\epsilon) 295$ (3614), 230 (6463), 221 (6406) nm; IR (KBr) $\mathrm{v}_{\max } 1495,1234 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 6.67(2 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.59$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 2.03(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.3,3.1 \mathrm{~Hz}), 1.78(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=12.6,3.1 \mathrm{~Hz}), 1.77-1.56(7 \mathrm{H}, \mathrm{m}), 1.44-1.26(5 \mathrm{H}, \mathrm{m})$, $1.16(3 \mathrm{H}, \mathrm{s}), 1.19-0.98(3 \mathrm{H}, \mathrm{m}), 0.89(3 \mathrm{H}, \mathrm{s}), 0.85(6 \mathrm{H}, \mathrm{s}), 0.82$ ($3 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 152.9,147.2,123.0$,
117.4, 114.3, 113.0, 76.5, 60.7, 56.5, 55.7, 52.4, 42.1, 41.1, 41.0, 39.9, 37.4, 37.1, 33.3, 33.3, 22.6, 21.4, 20.5, 18.6, 18.6, 18.2, 16.4, 16.0; EIMS m/z $396\left[\mathrm{M}^{+}\right]$(100), 381 (5), 259 (16), 137 (30); HREIMS m/z 396.3023 (calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{2}, 396.3028$).

Synthesis of Methyl Ether 5 from Strongylopholine3. To a solution of strongylopholine-3 ${ }^{1}(100 \mathrm{mg}, 240 \mu \mathrm{~mol})$ in acetone (2.40 mL) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(134 \mathrm{mg}, 970 \mu \mathrm{~mol})$ and iodomethane ($45.4 \mu \mathrm{~L}, 730 \mu \mathrm{~mol}$). The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 53 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (10:1)) to give methyl ether ($77.9 \mathrm{mg}, 73 \%$ yield): colorless, amorphous; $[\alpha]^{26} \mathrm{D}-22.4^{\circ}$ (c 1.0, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\epsilon) 295$ (3670), 229 (6639), 220 (6644) nm; IR (KBr) $\mathrm{V}_{\max } 1727,1497,1230 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $6.67(2 \mathrm{H}, \mathrm{m}), 6.62(1 \mathrm{H}, \mathrm{br}$ s), $3.74(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{s}), 2.61$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 2.16(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}), 2.03(1 \mathrm{H}, \mathrm{br}$ d, J $=12.5 \mathrm{~Hz}$), 1.97-1.25 (10H , m), $1.18(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s})$, $1.08-0.90(5 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{s}), 0.68(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 177.9,152.9,147.1,122.9,117.4,114.3$, $113.0,76.4,60.0,57.0,55.7,52.3,51.2,43.8,41.1,40.8,40.1$, $38.0,37.7,36.9,28.6,22.6,20.6,19.6,19.1,18.8,15.5,14.0$; EIMS m/z $440\left[\mathrm{M}^{+}\right]$(100), 304 (26), 120 (58), 93 (35); HREIMS $\mathrm{m} / \mathrm{z} 440.2909$ (cal cd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{4}, 440.2927$).

To a solution of the above methyl ether ($71.6 \mathrm{mg}, 160 \mu \mathrm{~mol}$) in THF (28.3 mL) was added $\mathrm{LiAlH}_{4}(94.4 \mathrm{mg}, 2.49 \mathrm{mmol}$) followed by refluxing for 1.5 h . To the reaction mixture diluted with $\mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{Na}_{2} \mathrm{SO}_{4}-10 \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred at room temperature for 2 h , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (3:1)) to give an alcohol ($66.1 \mathrm{mg}, 98 \%$ yield): colorless, amorphous; $[\alpha]^{26}$ D -68.3° (c 1.0, CHCl_{3}); UV (EtOH) $\lambda_{\max }(\epsilon)$ 295 (3668), 229 (6532), 220 (6446) nm; IR (KBr) $v_{\text {max }} 3316$, $1496,1232 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 6.67$ (2 H , $\mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}), 2.03$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.3,3.0 \mathrm{~Hz}), 1.80-1.28(11 \mathrm{H}, \mathrm{m}), 1.16(3 \mathrm{H}, \mathrm{s})$, $1.12-0.80(7 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 152.9,147.1,122.9,117.4$, $114.3,113.0,76.4,65.4,60.8,57.1,55.7,52.3,41.3,41.0,40.0$, $38.6,37.3,37.1,35.6,26.8,22.6,20.5,18.7,18.4,18.2,16.8$, 15.9; EIMS m/z $412\left[\mathrm{M}^{+}\right]$(100), 381 (5), 275 (8), 137 (54); HREIMS m/z 412.2963 (cal cd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{3}, 412.2977$).

To a solution of the above alcohol ($46.2 \mathrm{mg}, 110 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.10 \mathrm{~mL})$ were added 4A MS (58.0 mg) and PCC (58.0 $\mathrm{mg}, 260 \mu \mathrm{~mol}$) followed by stirring at room temperature for 4 h. The reaction mixture was diluted with EtOAc and filtered through a silica gel column. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-acetone (9:1)) to give an aldehyde ($36.7 \mathrm{mg}, 80 \%$ yield): col orless, amorphous; $[\alpha]^{4{ }^{4}} \mathrm{D}-66.0^{\circ}$ (c 1.0, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\epsilon) 295$ (3604), 230 (6390), 221 (6347) nm; IR (KBr) $\mathrm{v}_{\max }$ 1709, 1497, 1234 cm^{-1}; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 9.80(1 \mathrm{H}, \mathrm{s}), 6.67(2 \mathrm{H}$, m), $6.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 2.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 2.12$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}), 2.04(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.5,3.2 \mathrm{~Hz}), 1.90-$ $1.47(10 \mathrm{H}, \mathrm{m}), 1.33(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=13.5,3.1 \mathrm{~Hz}), 1.20(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=12.5,2.3 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.08-0.88(3 \mathrm{H}, \mathrm{m}), 1.01(3 \mathrm{H}$, s), $0.91(3 \mathrm{H}, \mathrm{s}), 0.73(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 205.8, 152.9, 147.1, 122.7, 117.4, 114.3, 113.1, 76.3, 59.5, 56.7, 55.7, 52.3, 48.4, 41.0, 40.7, 39.2, 37.7, 36.9, 34.4, 24.1, 22.6, 20.5, 18.8, 18.3, 17.8, 15.8, 15.2; EIMS m/z 410 [M ${ }^{+}$] (100), 381 (2), 273 (6); HREIMS m/z 410.2810 (calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3}$, 410.2821).

To a solution of the above aldehyde ($32.6 \mathrm{mg}, 79.4 \mu \mathrm{~mol}$) in diethylene glycol (1.60 mL) were added $\mathrm{KOH}(40.1 \mathrm{mg}, 710$ $\mu \mathrm{mol}$) and $\mathrm{H}_{2} \mathrm{NNH}_{2}-\mathrm{H}_{2} \mathrm{O}(48.6 \mu \mathrm{~L}, 950 \mu \mathrm{~mol})$, and refluxing was conducted for 4.5 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and EtOAc , washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (20:1)) to give methyl ether 5 ($24.4 \mathrm{mg}, 77 \%$ yield): col orless, amorphous; $[\alpha]^{19} \mathrm{D}-74.0^{\circ}$ (c 1.0, CHCl_{3}). The spectral data were
identical with those of methyl ether $\mathbf{5}$ prepared from strongy-lopholine-22 (1)

Synthesis of Methyl Ether 6 from Strongylopholine23 (2). To a solution of strongylopholine-23 (2) ($28.7 \mathrm{mg}, 72.0$ $\mu \mathrm{mol}$) in acetone ($700 \mu \mathrm{~L}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(39.8 \mathrm{mg}, 230$ $\mu \mathrm{mol}$) and iodomethane ($13.4 \mu \mathrm{~L}, 220 \mu \mathrm{~mol}$). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 21 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$ and EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (4:1)) to give methyl ether 6 ($25.1 \mathrm{mg}, 84 \%$ yield): col orless, amorphous; $[\alpha]^{26} \mathrm{D}-59.3^{\circ}$ (c 0.5, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\epsilon) 296$ (3842), 229 (6936), 221 (6941) nm; IR (KBr) $v_{\max } 3436,1496,1229 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $6.67(2 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=11.7$ $\mathrm{Hz}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.63(2 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{br}$ d, $\mathrm{J}=13.1 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.3,3.2 \mathrm{~Hz}), 1.93-1.37(9 \mathrm{H}$, $\mathrm{m}), 1.26-0.96(5 \mathrm{H}, \mathrm{m}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{s})$, $0.79(3 \mathrm{H}, \mathrm{s}), 0.78(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 152.9, 147.2, 122.9, 117.4, 114.4, 113.0, 76.5, 62.9, 61.5, 56.9, 55.7, 52.9, 42.4, 42.4, 41.8, 41.6, 37.3, 34.5, 33.9, 33.0, 22.7, 21.9, 21.9, 20.2, 18.5, 18.0, 15.5; EIMS m/z 412 [M ${ }^{+}$] (100), 381 (7), 257 (15); HRESIMS m/z 413.3071 (calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{3}$, $M^{+}+\mathrm{H}, 413.3056$).

Synthesis of Methyl Ether 5 from Methyl Ether 6. To a solution of methyl ether $5(20.9 \mathrm{mg}, 50.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($500 \mu \mathrm{~L}$) were added 4A MS (13.1 mg) and PCC ($13.1 \mathrm{mg}, 60.8$ $\mu \mathrm{mol})$, followed by stirring at room temperature for 2.5 h . The reaction mixture was diluted with EtOAc and filtered through a silica gel column. The filtrate was concentrated under reduced pressure. The residue was recrystallized from $\mathrm{CHCl}_{3}-$ acetone to give an aldehyde ($20.5 \mathrm{mg}, 99 \%$ yield): colorless, amorphous; $[\alpha]^{26} \mathrm{D}-25.0^{\circ}$ (c $0.5, \mathrm{CHCl}_{3}$); UV (EtOH) $\lambda_{\text {max }}(\epsilon)$ 295 (3888), 230 (6724), 220 (6993) nm; IR (KBr) $\mathrm{V}_{\max }$ 1690, $1498,1236 \mathrm{~cm}^{-1}$; 1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 10.11$ (1 H , $\mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 6.66(2 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{br}$ s), $3.74(3 \mathrm{H}, \mathrm{s}), 2.60$ $(3 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.7,3.3 \mathrm{~Hz}), 1.96-1.78(4 \mathrm{H}, \mathrm{m})$, $1.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.6,5.6 \mathrm{~Hz}), 1.56(1 \mathrm{H}, \mathrm{m}), 1.47-1.10(8 \mathrm{H}$, $\mathrm{m}), 1.10(3 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{s}), 0.77(3 \mathrm{H}, \mathrm{s}), 0.75$ ($1 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 206.1,153.0,147.1$, $122.5,117.5,114.3,113.2,76.0,60.6,55.7,55.0,53.4,51.5,41.6$, $40.8,39.8,36.9,34.4,33.7,31.9,23.0,20.8,20.3,19.3,19.0$, 17.6, 16.6; ESIMS m/z 410 [M+ + H] (100), 393 (19), 219 (30); HRESIMS m/z 411.2873 (calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3}, \mathrm{M}^{+}+\mathrm{H}, 411.2899$).

To a solution of the above al dehyde ($12.7 \mathrm{mg}, 30.9 \mu \mathrm{~mol}$) in diethylene glycol ($600 \mu \mathrm{~L}$) were added $\mathrm{H}_{2} \mathrm{NNH}_{2}-\mathrm{H}_{2} \mathrm{O}(79.1 \mu \mathrm{~L}$, $1.55 \mathrm{mmol})$ and concentrated $\mathrm{HCl}(15.7 \mu \mathrm{~L}, 150 \mu \mathrm{~mol})$, followed by refluxing for 12 h . The mixture was then treated with KOH ($69.9 \mathrm{mg}, 1.24 \mathrm{mmol}$) and refluxed for 2 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and saturated aqueous NaCl . The aqueous layer was extracted with CHCl_{3}. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel TLC (development with hexane-EtOAc (8:1)) to give methyl ether 5 ($1.2 \mathrm{mg}, 10 \%$ yield): colorless, amorphous; $[\alpha]^{26} \mathrm{D}-72.7^{\circ}$ (c $\left.0.1, \mathrm{CHCl}_{3}\right)$. The spectral data were identical with those of methyl ether 5 prepared from strongylopholine-3.

Synthesis of Strongylopholine-23 (2) from Strongylo-pholine-24 (3). To a solution of strongyl opholine-24 (3) (4.5 $\mathrm{mg}, 11.3 \mu \mathrm{~mol})$ in THF $(300 \mu \mathrm{~L})$ was added $\mathrm{LiAlH}_{4}(0.9 \mathrm{mg}$, $22.6 \mu \mathrm{~mol}$), followed by stirring at room temperature for 30 min. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, treated with $\mathrm{Na}_{2} \mathrm{SO}_{4}-10 \mathrm{H}_{2} \mathrm{O}$, stirred at room temperature for 2 h , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (2:1)) to give strongylopholine23 (2) ($4.5 \mathrm{mg}, 99 \%$ yield): col orless, amorphous; [$\alpha]^{25} \mathrm{D}-56.2^{\circ}$ ($\mathrm{c} 0.5, \mathrm{CHCl}_{3}$). The spectral data were identical with those of strongyl opholine-23 (2).

Synthesis of Diol 7 from Strongylopholine-25 (4). To a solution of strongylopholine-25 (4) ($5.0 \mathrm{mg}, 12.1 \mu \mathrm{~mol}$) in DMF ($100 \mu \mathrm{~L}$) were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($19.6 \mathrm{mg}, 60.3 \mu \mathrm{~mol}$) and iodomethane ($3.8 \mu \mathrm{~L}, 60.3 \mu \mathrm{~mol}$). The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 30 min , diluted with CHCl_{3}, washed with $\mathrm{H}_{2} \mathrm{O}$ and
saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel col umn chromatography (elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$) to give diol 7 (3.5 mg , 68% yield): col orless, amorphous; $[\alpha]^{20}{ }_{D}$ -54.3° (c 0.4, CHCl_{3}); UV (EtOH) $\lambda_{\max }(\epsilon) 296$ (3767), 230 (6628), 221 (6569) nm; IR (KBr) $\mathrm{V}_{\max } 3423,1496,1231 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $6.66(2 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{s})$, $3.88(2 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.58(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=10.5 \mathrm{~Hz}), 2.62(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 2.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}), 1.87(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\mathrm{J}=12.6 \mathrm{~Hz}), 1.85(2 \mathrm{H}, \mathrm{m}), 1.73-1.47(8 \mathrm{H}, \mathrm{m}), 1.17-0.99(4 \mathrm{H}$, m), $1.17(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{s}), 0.86(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 152.9,147.2,122.9,117.4$, 114.3, 113.1, 76.5, 67.0, 63.5, 61.8, 56.7, 55.7, 52.7, 42.1, 42.0, 42.0, 38.3, 37.1, 36.2, 35.6, 27.7, 22.8, 21.0, 20.3, 19.0, 18.6, 15.0; ESIMS m/z 429 [M $\left.{ }^{+}+\mathrm{H}\right]$ (58), 411 (100), 393 (84); HRESIMS m/z 429.3041 (cal cd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4}, \mathrm{M}^{+}+\mathrm{H}, 429.3005$).

Synthesis of Methyl Ether 8 from Strongylopholine2. To a solution of strongylopholine $2^{1}(10.0 \mathrm{mg}, 24.4 \mu \mathrm{~mol})$ in acetone ($300 \mu \mathrm{~L}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(13.5 \mathrm{mg}, 97.6 \mu \mathrm{~mol})$ and iodomethane ($4.5 \mu \mathrm{~L}, 73.2 \mu \mathrm{~mol}$), followed by stirring at $40^{\circ} \mathrm{C}$ for 51 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with CHCl_{3}-acetone (49:1)) to give methyl ether 8 ($10.0 \mathrm{mg}, 97 \%$ yield): colorless, amorphous; $[\alpha]^{24} \mathrm{D}-61.5^{\circ}\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\max }(\epsilon) 296$ (3288), 229 (5873), 221 (5939) nm; IR $(\mathrm{KBr}) \mathrm{V}_{\max } 1719,1496,1233 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $6.67(2 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3,2.2$ $\mathrm{Hz}), 4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.62(2 \mathrm{H}, \mathrm{m}), 2.18$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 2.09(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.9,3.1 \mathrm{~Hz}), 1.91-$ $1.63(7 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{m}), 1.36-1.02(7 \mathrm{H}, \mathrm{m}), 1.21(3 \mathrm{H}, \mathrm{s})$, $1.18(3 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 176.6, 153.1, 146.9, 122.3, 117.5, 114.3, 113.3, 76.0, 73.4, 55.7, 55.3, 52.5, 50.4, 43.2, 41.3, 40.2, 38.1, 36.7, 36.6, 36.5, 23.2, 22.5, 20.9, 20.7, 20.4, 18.6, 15.8; EIMS m/z 424 [M ${ }^{+}$] (100), 287 (18), 229 (32), 137 (36); HREIMS m/z 424.2593 (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4}, 424.2614$).

Synthesis of Diol 7 from Lactone 8. To a solution of lactone $8(104 \mathrm{mg}, 244 \mu \mathrm{~mol})$ in THF (5.00 mL) was added $\mathrm{LiAlH}_{4}(30.0 \mathrm{mg}, 731 \mu \mathrm{~mol})$. The mixture was refluxed for 1 h, treated with 1 N HCl , and extracted with CHCl_{3}. $\mathrm{TheCHCl}_{3^{-}}$ soluble portion was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$) to give diol 7 ($105 \mathrm{mg}, 100 \%$ yield): colorless, amorphous; $[\alpha]^{20}{ }_{\mathrm{D}}-54.3^{\circ}$ ($\mathrm{c} 0.4, \mathrm{CHCl}_{3}$). The spectral data were identical with those of diol 7 prepared from strongylopholine-25 (4).

Synthesis of Alcohol 6 from Lactone 8. To a solution of Iactone 8 (104 mg, $244 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.50 \mathrm{~mL})$ was added DIBAL-H ($290 \mu \mathrm{~L}, 268 \mu \mathrm{~mol}, 0.93 \mathrm{M}$ in hexane) at $-78{ }^{\circ} \mathrm{C}$ followed by stirring for 1 h . The reaction mixture was treated with 1 N HCl and extracted with CHCl_{3}. The CHCl_{3}-soluble portion was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a crude hemiacetal. The crude hemiacetal was used in the next reaction without purification.

To a solution of the above crude hemiacetal in diethylene glycol (2.50 mL) were added $\mathrm{H}_{2} \mathrm{NNH}_{2}-\mathrm{H}_{2} \mathrm{O}$ ($500 \mu \mathrm{~L}$, 16.1 mmol) and concentrated $\mathrm{HCl}(500 \mu \mathrm{~L}, 30.0 \mathrm{mmol}$). The mixture was refluxed for 12 h , treated with KOH ($400 \mathrm{mg}, 7.13 \mathrm{mmol}$), and refluxed for 10 h . After 1 N HCl addition, the mixture was extracted with CHCl_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution with hexane-EtOAc (4:1)) to give alcohol 6 ($19.8 \mathrm{mg}, 20 \%$ yield (two steps)): col orless, amorphous; $[\alpha]^{23} \mathrm{D}-60.0^{\circ}$ (c 1.5, CHCl_{3}). The spectral data were identical with those of alcohol 6 prepared from strongylopholine-23 (2).

Acknowledgment. This work was supported in part by a grant for private universities from The Promotion and Mutual Aid Corporation for Private Schools of J apan and Ministry of Education, Culture, Sports, Science and Technology. The authors express appreciation toTaiho Pharmaceutical Co., Ltd. for measurement of the biological activity.

Supporting Information Available: ${ }^{1} \mathrm{H} N M R,{ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-$ ${ }^{1}$ H COSY, HMQC, HMBC, and NOESY spectra of $\mathbf{1}$ and ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 - 4}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Brekman, J. C.; Daloze, D.; Hulot, G.; Tursch, B.; Declercq, J. P.; Germain, G.; Van Meerssche, M. Bull. Soc. Chim. Belg. 1978, 87, 917-926.
(2) Salvaì, J.; Faulkner, D. J. J . Org. Chem. 1990, 55, 1941-1943.
(3) Balbin-Oliveros, M.; Edrada, R. A.; Proksch, P.; Wray, V.; Witte, L.; van Soest, R. W. M. J . Nat. Prod. 1998, 61, 948-952.
(4) Shen, Y.-C.; Hung, M.-C.; Prakash, C. V. S.; Wang, J.-J . J . Chin. Chem. Soc. 2000, 47, 567-570.
(5) Shen, Y.-C.; Prakash, C. V. S. J. Nat. Prod. 2000, 63, 1686-1688.
(6) Liu, H.; Namikoshi, M.; Nagai, H.; Akano, K.; K obayashi, H.; Yao, X. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 2002, 44, 271276.
(7) Mitome, H.; Nagasawa, T.; Miyaoka, H.; Yamada, Y.; van Soest, R. W. M. J . Nat. Prod. 2003, 66, 46-50, and references therein.
(8) Ishiyama, M.; Miyazono, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. Talanta 1997, 44, 1299-1305.
(9) Tominaga, H.; I shiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe M. Anal. Commun. 1999, 36, 47-50.

NP030312Q

[^0]: * To whom correspondence should be addressed. Tel: +81 426763080. Fax: +8142676 3073. E-mail: miyaokah@ps.toyaku.ac.jp.
 ${ }^{\dagger}$ Tokyo University of Pharmacy and Life Science.
 \ddagger University of Amsterdam.

